
Maintainable
Software
Software Engineering  

Andreas Zeller, Saarland University

The Challenge

• Software may live much longer than
expected

• Software must be continuously adapted to
a changing environment

• Maintenance takes 50–80% of the cost

• Goal: Make software maintainable and
reusable – at little or no cost

Software
Maintenance

• Corrective maintenance: Fix bugs

• Adaptive maintenance: adapt system
to the environment it operates

• Perfective maintenance: adapt to new
or changed requirements

• Preventive maintenance: increase
quality or prevent future bugs from

Software
Maintenance

• Follow principles of object-oriented
design

• Follow guidelines for maintainable
software

Principles 
of object-oriented design

• Abstraction

• Encapsulation

• Modularity

• Hierarchy

Goal: Maintainability and Reusability

Principles 
of object-oriented design

• Abstraction

• Encapsulation

• Modularity

• Hierarchy

Abstraction

Concrete Object General Principle

Abstraction…

• Highlights common properties of objects

• Distinguishes important and unimportant
properties

• Must be understood even without a
concrete object

Abstraction

“An abstraction denotes the essential
characteristics of an object that distinguish it from
all other kinds of objects and thus provide crisply
defined conceptual boundaries, relative to the
perspective of the viewer”

Perspectives

Example: Sensors

An Engineer’s Solution

void check_temperature() {
 // see specs AEG sensor type 700, pp. 53
 short *sensor = 0x80004000;
 short *low = sensor[0x20];
 short *high = sensor[0x21];
 int temp_celsius = low + high * 256;
 if (temp_celsius > 50) {
 turn_heating_off()
 }
}

Abstract Solution
typedef float Temperature;
typedef int Location;

class TemperatureSensor {
public:
 TemperatureSensor(Location);
 ~TemperatureSensor();

 void calibrate(Temperature actual);
 Temperature currentTemperature() const;
 Location location() const;

private: …
}

All implementation
details are hidden

More Abstraction

Principles 
of object-oriented design

• Abstraction – hide details

• Encapsulation

• Modularity

• Hierarchy

Principles 
of object-oriented design

• Abstraction – Hide details

• Encapsulation

• Modularity

• Hierarchy

Encapsulation

• No part of a complex system should
depend on internal details of another

• Goal: keep software changes local

• Information hiding: Internal details  
(state, structure, behavior) become the
object’s secret

Encapsulation

“Encapsulation is the process of
compartmentalizing the elements of an abstraction
that constitute its structure and its behavior;
encapsulation serves to separate the contractual
interface of an abstraction and its implementation.”

Encapsulation

An active Sensor
class ActiveSensor {
public:
 ActiveSensor(Location)
 ~ActiveSensor();

 void calibrate(Temperature actual);
 Temperature currentTemperature() const;
 Location location() const;

 void register(void (*callback)(ActiveSensor *));

private: …
}

called when
temperature

changes

Callback management is the sensor’s secret

Anticipating Change

Features that are anticipated to change
should be isolated in specific components

• Number literals

• String literals

• Presentation and interaction

Number literals

int a[100]; for (int i = 0; i <= 99; i++) a[i] = 0;

const int SIZE = 100;
int a[SIZE]; for (int i = 0; i < SIZE; i++) a[i] = 0;

const int ONE_HUNDRED = 100;
int a[ONE_HUNDRED]; …

Number literals

double sales_price = net_price * 1.19;

final double VAT = 1.19;
double sales_price = net_price * VAT;

String literals

if (sensor.temperature() > 100)
 printf(“Water is boiling!”);

if (sensor.temperature() > BOILING_POINT)
 printf(message(BOILING_WARNING,
 “Water is boiling!”);

if (sensor.temperature() > BOILING_POINT)
 alarm.handle_boiling();

Principles 
of object-oriented design

• Abstraction – Hide details

• Encapsulation – Keep changes local

• Modularity

• Hierarchy

Principles 
of object-oriented design

• Abstraction – Hide details

• Encapsulation – Keep changes local

• Modularity

• Hierarchy

Modularity

• Basic idea: Partition a system such that
parts can be designed and revised
independently (“divide and conquer”)

• System is partitioned into modules that
each fulfil a specific task

• Modules should be changeable and
reuseable independent of other modules

Modularity

Modularity

“Modularity is the property of a system that has
been decomposed into a set of cohesive and loosely
coupled modules.”

Module Balance

• Goal 1: Modules should hide information –
and expose as little as possible

• Goal 2: Modules should cooperate –  
and therefore must exchange information

• These goals are in conflict with each other

Principles of Modularity

• High cohesion – Modules should contain
functions that logically belong together

• Weak coupling – Changes to modules
should not affect other modules

• Law of Demeter – talk only to friends

High cohesion

• Modules should contain functions that
logically belong together

• Achieved by grouping functions that work on
the same data

• “natural” grouping in object oriented design

Weak coupling

• Changes in modules should not impact
other modules

• Achieved via

• Information hiding

• Depending on as few modules as possible

Law of Demeter
or Principle of Least Knowledge

• Basic idea: Assume as little as
possible about other modules

• Approach: Restrict method
calls to friends

Call your Friends

A method M of an object O should only call
methods of

1. O itself

2. M’s parameters

3. any objects created in M

4. O’s direct component objects

“single dot rule”

Demeter: Example
class Uni {
 Prof boring = new Prof();
 public Prof getProf() { return boring; }
 public Prof getNewProf() { return new Prof(); }

}

class Test {
 Uni uds = new Uni();
 public void one() { uds.getProf().fired(); }
 public void two() { uds.getNewProf().hired(); }
}

Demeter: Example
class Uni {
 Prof boring = new Prof();
 public Prof getProf() { return boring; }
 public Prof getNewProf() { return new Prof(); }
 public void fireProf(...) { ... }
}

class BetterTest {
 Uni uds = new Uni();
 public void betterOne() { uds.fireProf(...); }

}

Demeter effects

• Reduces coupling between modules

• Disallow direct access to parts

• Limit the number of accessible classes

• Reduce dependencies

• Results in several new wrapper methods
(“Demeter transmogrifiers”)

Principles 
of object-oriented design

• Abstraction – Hide details

• Encapsulation – Keep changes local

• Modularity – Control information flow  
High cohesion • weak coupling • talk only to friends

• Hierarchy

Principles 
of object-oriented design

• Abstraction – Hide details

• Encapsulation – Keep changes local

• Modularity – Control information flow  
High cohesion • weak coupling • talk only to friends

• Hierarchy

Hierarchy

“Hierarchy is a
ranking or ordering
of abstractions.”

Central Hierarchies

• “has-a” hierarchy – 
Aggregation of abstractions

• A car has three to four wheels

• “is-a” hierarchy – 
Generalization across abstractions

• An ActiveSensor is a TemperatureSensor

Central Hierarchies

• “has-a” hierarchy – 
Aggregation of abstractions

• A car has three to four wheels

• “is-a” hierarchy – 
Generalization across abstractions

• An ActiveSensor is a TemperatureSensor

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions

• Liskov principle – Subclasses should not
require more, and not deliver less

• Dependency principle – Classes should
only depend on abstractions

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions

• Liskov principle – Subclasses should not
require more, and not deliver less

• Dependency principle – Classes should
only depend on abstractions

Open/Close principle

• A class should be open for extension,  
but closed for changes

• Achieved via inheritance and dynamic binding

An Internet Connection

void connect() {
 if (connection_type == MODEM_56K)
 {
 Modem modem = new Modem();
 modem.connect();
 }
 else if (connection_type == ETHERNET) …
 else if (connection_type == WLAN) …
 else if (connection_type == UMTS) …
}

Solution with Hierarchies

MyApp
connect()

Connection
connect()
hangup()

ModemConnection
connect()
hangup()

WLANConnection
connect()
hangup()

EthernetConnection
connect()
hangup()

enum { FUN50, FUN120, FUN240, ... } plan;
enum { STUDENT, ADAC, ADAC_AND_STUDENT ... } special;
enum { PRIVATE, BUSINESS, ... } customer_type;
enum { T60_1, T60_60, T30_1, ... } billing_increment;

int compute_bill(int seconds)
{
 if (customer_type == BUSINESS)
 billing_increment = T1_1;
 else if (plan == FUN50 || plan == FUN120)
 billing_increment = T60_1;
 else if (plan == FUN240 && contract_year < 2011)
 billing_increment = T30_1;
 else
 billing_increment = T60_60;

 if (contract_year >= 2011 && special != ADAC)
 billing_increment = T60_60;
 // etc.etc.

Hierarchy Solution

• You can add a new plan at any time!

Fun50 Fun120
+ percentage()
Discount

ADAC Student

+ units(seconds)
BillingIncrement

T30_1 T1_1

– year
Plan

1 0..*

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions

• Liskov principle – Subclasses should not
require more, and not deliver less

• Dependency principle – Classes should
only depend on abstractions

Liskov Substitution Principle

• An object of a superclass should always be
substitutable by an object of a subclass:

• Same or weaker preconditions

• Same or stronger postconditions

• Derived methods should not assume more
or deliver less

Circle vs Ellipse

• Every circle is an
ellipse

• Does this hierarchy
make sense?

• No, as a circle
requires more and
delivers less

Circle
draw()

Ellipse
draw()

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions

• Liskov principle – Subclasses should not
require more, and not deliver less

• Dependency principle – Classes should
only depend on abstractions

Dependency principle

• A class should only depend on abstractions
– never on concrete subclasses 
(dependency inversion principle)

• This principle can be used to break
dependencies

Dependency
// Print current Web page to FILENAME.
void print_to_file(string filename)
{
 if (path_exists(filename))
 {
 // FILENAME exists;
 // ask user to confirm overwrite
 bool confirmed = confirm_loss(filename);
 if (!confirmed)
 return;
 }

 // Proceed printing to FILENAME
 ...
}

Cyclic Dependency

Constructing, testing, reusing individual
modules becomes impossible!

Core

+print_to_file()

UserPresentation

+confirm_loss()

invokes

invokes

Dependency
// Print current Web page to FILENAME.
void print_to_file(string filename, Presentation *p)
{
 if (path_exists(filename))
 {
 // FILENAME exists;
 // ask user to confirm overwrite
 bool confirmed = p->confirm_loss(filename);
 if (!confirmed)
 return;
 }

 // Proceed printing to FILENAME
 ...
}

Depending on 
Abstraction

Core

+print_to_file()

Presentation
+confirm_loss()

UserPresentation

+confirm_loss()

AutomatedPresentation

+confirm_loss()

return true;ask user

Choosing
Abstraction

• Which is the
“dominant”
abstraction?

• How does this
choice impact the
remaining system?

Hierarchy principles

• Open/Close principle – Classes should be
open for extensions

• Liskov principle – Subclasses should not
require more, and not deliver less

• Dependency principle – Classes should
only depend on abstractions

Principles 
of object-oriented design

• Abstraction – Hide details

• Encapsulation – Keep changes local

• Modularity – Control information flow  
High cohesion • weak coupling • talk only to friends

• Hierarchy – Order abstractions  
Classes open for extensions, closed for changes • Subclasses that
do not require more or deliver less • depend only on abstractions

Principles 
of object-oriented design

• Abstraction – Hide details

• Encapsulation – Keep changes local

• Modularity – Control information flow  
High cohesion • weak coupling • talk only to friends

• Hierarchy – Order abstractions 
Classes open for extensions, closed for changes • Subclasses that
do not require more or deliver less • depend only on abstractions

Goal: Maintainability and Reusability

Software
Maintenance

• Follow principles of object-oriented
design

• Follow guidelines for maintainable
software

Software
Maintenance

• Follow guidelines 
for maintainable  
software

1. Write Short Units of
Code

• Limit the length of code units 
to ~15 lines of code

• Split long units into multiple smaller
units

• Smaller units are easier to
understand, easier to test, easier to
reuse

Write Short Units of
Code

public void doIt() { 
 // Query amount from database
 results = executeQuery("SELECT account from "...);
 if (results == null) ...

 // Find account numbers 
 while (results.next()) {
 ... whatever ...
 }

 // Store accounts in database again
 ...
}

Write Short Units of
Code

public void doIt() { 
 results = queryAmounts();
 accounts = findAccountNumbers(results); 
 storeAccounts(accounts);
}

2. Write Simple Units of
Code

• Limit the number of branches to 4

• Split complex units into simpler
ones; avoiding complex units
altogether

• Makes units easier to modify and test

Write Simple Units of
Code

public List<Color> getFlagColors(Nationality nat) {
 List<color> result;
 switch (nat) {
 case DUTCH:
 result = Arrays.asList(RED, WHITE, BLUE);
 break;
 case GERMAN:
 result = Arrays.asList(BLACK, RED, GOLD);
 break;
 case FRENCH:
 result = Arrays.asList(BLUE, WHITE, RED);
 break;
 // ... 
}

Write Simple Units of
Code

public class GermanNationality extends Nationality { 
 public List<Color> getFlagColors() {
 return Array.asList(BLACK, RED, GOLD);
 }
}

3. Write Code Once
• Do not copy code

• Write reusable, generic code and/or
call existing methods

• When code is copied, bugs need to be
fixed at multiple places

• Instead, introduce delegate method
and/or superclass

Write Code Once
public class CheckingAccount {
 public Transfer makeTransfer(String account, Money amount) {
 // Check account number 
 int sum = 0;
 for (int i = 0; i < account.length(); i++)
 sum += (9 - i) * convert(account.charAt(i));
 if (sum % 11 != 0)
 throw BusinessException("Invalid Account");
 // ...
 }
}

public class SavingsAccount {
 public Transfer makeTransfer(String account, Money amount) {
 // Check account number 
 int sum = 0;
 for (int i = 0; i < account.length(); i++)
 sum += (9 - i) * convert(account.charAt(i));
 if (sum % 11 != 0)
 throw BusinessException("Invalid Account");
 // ...
 }
}

Write Code Once

public class CheckingAccount extends Account {
 public Transfer makeTransfer(String account, Money amount) {
 validateAccount(); 
 // ...
 }
}
public class SavingsAccount extends Account {
 public Transfer makeTransfer(String account, Money amount) {
 validateAccount();
 // ...
 }
}

public class Account {
 public void validateAccount(String account) {
 int sum = 0;
 for (int i = 0; i < account.length(); i++)
 sum += (9 - i) * convert(account.charAt(i));
 if (sum % 11 != 0)
 throw BusinessException("Invalid Account");
 }
}

4. Keep Unit Interfaces
Small

• Limit the number of parameters per unit
to 4

• Do this by extracting parameters into
objects

• Keeping the number of parameters low
makes units easier to understand and
reuse

Keep Unit Interfaces
Small

private void drawRectangle(Canvas c, Graphics g, int x, int y, int w, int h)

class Rectangle { 
 private final Point position;
 private final int width;
 private final int height;
 // ...
 private void render(Canvas c, Graphics g);  
 // ... 
}

5. Separate Concerns  
In Modules

• Avoid large modules to achieve loose
coupling between them

• Do this by

• assigning responsibilities to separate
modules

• hiding implementation details

• Changes in a loosely coupled code base are
easier to oversee and execute

6. Couple
Architecture

• Achieve loose coupling between top-
level components

• Do this by minimizing the amount of
code that is exposed to modules in
other components

• Independent components ease
isolated maintenance

7. Keep Architecture
Components

• Balance the number and relative size
of top-level components in your code

• Do this by organizing the code in a
way that the number of components
is ~9 (between 6–12) and that the
components are of approximately
equal size

• Balanced components ease locating
code and allow for isolated

Keep Architecture
Components

changesexisting component

unbalanced balanced

8. Keep your Codebase Small

• Keep your codebase as small as
possible

• Do this by avoiding codebase growth
and actively reducing system size

• A small product / project / team is a
success factor

9. Automate Tests

• Automate tests for your codebase

• Do this by writing automated tests
using a test framework

• Automated testing makes development
predictable and less risky

10. Write Clean
Code

• Write clean code.

• Do this by not leaving code smells
behind after development work

• Clean code is maintainable code

Write Clean Code
• Leave no bad comments behind 

Whatever can be said in code needs no comment

• Leave no code in comments behind 
Fix it or reject it

• Leave no magic numbers behind 
USD = EUR * 1.09. What could ever change?

• LeaveNoExcessivelyLongIdentifiersBehi
nd()

Software
Maintenance

• Follow principles of object-oriented
design

• Follow guidelines for maintainable
software

